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1. Introduction

We have recently witnessed that a systematic analysis of supersymmetric solutions in su-

pergravity theories which utilises the existence of a Killing spinor can lead to a remarkable

insight into string theory and strongly coupled gauge theory via the gauge/gravity corre-

spondence [1]. Especially in [2], the authors consider 1/2-BPS fluctuations of maximally

supersymmetric AdS solutions in type IIB supergravity and find that the entire set of reg-

ular solutions can be matched with the phase space of one-dimensional free fermions. This

is in good harmony with the dual field theory, N = 4,D = 4 super Yang-Mills model: in

the 1/2-BPS sector it is reduced to a Hermitian matrix model whose eigenvalues can be

treated as free fermions when one takes into account the Van der Monde determinant.

It is then natural to ask whether we can also identify the gauge dynamics for less super-

symmetric operators from the geometric constraints imposed by unbroken supersymmetry

on the supergravity side. While the 1/2-BPS solutions are equipped with SO(4) × SO(4)

which results in S3 × S3 part in the 10 dimensional metric, 1/4-BPS operators have

SO(4) × SO(2) symmetry which implies that the solutions should have a S3 × S1 factor.

Supersymmetric solutions of type IIB supergravity with such isometries have been studied

in [3, 4]. One can also consider 1/8-BPS solutions which have just a single S3 factor in

the metric [5], and it can be shown that the solution is constructed over a 6 dimensional
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Kähler space obeying a type of non-linear Laplace equation for the Ricci tensor. See [6] for

the study on a different class of 1/8-BPS solutions, and [7] for a unified viewpoint and a

systematic analysis of supersymmetric regular solutions and the identification of the dual

operators to 1/2, 1/4 and 1/8-BPS solutions.

It is also interesting to apply this program to M-theory. In [2] the authors considered

the 1/2-BPS fluctuations, or bubbles, of M-theory as well and showed that the supergravity

equations are reduced to a 3 dimensional continuous Toda equation. It is expected that

this particular Toda equation is responsible for the dynamics of 1/2-BPS operators of the

superconformal field theory defined on M2 or M5-branes, although in this case we do not

have a perturbative description of the dual conformal field theory and it is not clear how

to derive the Toda system from the field theory. See [8, 9] for discussions on the solutions

of the Toda equation and their interpretations as giant gravitons.

One can try to determine the dual geometry for less-supersymmetric M-theory bubbles.

1/8-BPS solutions with an S2 factor, or AdS2 when analytically continued, has been studied

already in [10] and the resulting BPS system satisfies, surprisingly enough, exactly the

same equation - now defined in 8 dimensions - which governs S3 bubbles of IIB theory.

A natural interpretation of such configurations is that they are dual to BPS operators

which are Lorentz singlet and holomorphic in SU(4) ⊂ SO(8) R-symmetry of the M2-brane

theory.

We are interested in 1/4-BPS bubbles of M-theory in this paper. If we consider the 6

dimensional field theory of M5-branes with (2, 0) supersymmetry and restrict ourselves to

BPS operators which are Lorentz-singlet but holomorphic in SU(2) ⊂ SO(5) R-symmetry,

the dual geometry should carry an SO(6) symmetry which lead to an S5-factor in the metric.

A related problem of supersymmetric AdS5 solutions in M-theory has been addressed

in [11] and the local geometry of the corresponding bubble solutions are obtained simply

through analytic continuations. Although it will be very interesting to study the bubble

solutions in detail and identify the dual operators, in this paper we restrict ourselves to

the other class of 1/4-BPS M-theory bubbles. In M2-brane field theory, if a given Lorentz-

singlet operator saturates the BPS bound and is written as a holomorphic combination of

two chiral multiplets, it should be invariant under SO(3) × SO(4) symmetry so the dual

geometry should contain S2 × S3. We take this as our starting point and analyse how the

supersymmetry helps us determine the local form of the solutions, filling the gap between

the 1/2-BPS bubbles of [2] and the 1/8-BPS solutions of [10]. There exist a number of

papers which explore the AdS/CFT relation using the supergravity backgrounds for specific

M-brane configurations as duals to interesting field theory objects such as Wilson loops,

defect conformal field theories etc. See for instance [12 – 14].

Once we establish the S2 × S3 solutions, it is straightforward to obtain AdS2 × S3 or

AdS3×S2 via a series of analytic continuations. They are interpreted more naturally as the

near-horizon geometry of (wrapped) M2 or M5-branes with some extra isometries in the

transverse space. Such configurations have been already analysed using the supersymmetry

condition of brane probes in the Calabi-Yau threefolds, by [15, 16]. We will show that our

results indeed agree with the wrapped brane solutions.

Section 2 serves as the main part of this article. We first fix our convention and derive
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the 6 dimensional Killing spinor equations in section2.1. We then analyse the algebraic

and differential equations of spinor bilinears to determine the geometry of the solutions in

section2.2. In section 3 we discuss how one can obtain the Wick-rotated versions AdS2×S3

and AdS3 ×S2 through analytic continuations, and show they are equivalent to the results

of [15, 16]. In section4 and section 5 we discuss how our solutions can be related to 1/2-BPS

or 1/8-BPS M-theory bubbles from the literature. We conclude in section 6.

2. S2
× S3 ansatz and the local form of the supersymmetric solutions

2.1 The metric ansatz and the Killing spinor equations in D = 6

In this paper, we aim to study supersymmetric solutions in 11 dimensional supergravity

with SO(3) × SO(4) isometry which are dual to 1/4-BPS operators of the dual conformal

field theory in 3 or 6 dimensions. We thus assume that the spacetime metric should contain

S2 × S3. More specifically, our ansatz is

ds2
11 = e2Ads2

S2 + e2Bds2
S3 + gµνdxµdxν , (2.1)

G = F ∧ VolS2, (2.2)

where ds2
S2 and ds2

S3 represent the metric of the round sphere with radius 1 in the ap-

propriate dimensionality. We dimensionally reduce the four-form field strength G = dC

to have a 6 dimensional gauge field F . Since electric(magnetic) configurations of G are

associated to M2(M5)-branes, in our setting M2-branes are wrapped on S2 and M5-branes

contain the S3 as part of the worldvolume.

We adopt the standard convention for the 11 dimensional supergravity with the la-

grangian density

L = R ∗ 1 −
1

2
G ∧ ∗G −

1

6
C ∧ G ∧ G, (2.3)

and the supersymmetry transformation for the gravitino is given as

δψM = ∇M ǫ +
1

288

(

Γ M1···M4

M − 8δM1

M ΓM2M3M4

)

GM1···M4
ǫ, (2.4)

with the spinorial parameter ǫ which should obey the Majorana condition. ΓM represents

the 11 dimensional gamma matrices satisfying

{ΓM ,ΓN} = 2gMN , (2.5)

where gMN is the 11 dimensional metric tensor and M,N = 0, 1, . . . , 10.

Above ansatz can be understood as the dimensional reduction of 11 dimensional su-

pergravity theory on (unsquashed) S2 × S3, and we expect to have an effective action in 6

dimensions, which has the metric, two scalar fields A,B, and a two-form field strength F

as the dynamical fields. It is worth noting here that in our ansatz the cubic Wess-Zumino

term in (2.3) has no effect, so from the form-field equation and the Bianchi identify for 11

dimensional field we know F should satisfy simply

dF = 0, (2.6)

d
(

e−2A+3B ∗6 F
)

= 0. (2.7)
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We need to choose a gamma matrix basis which respects the dimensional split we have

introduced, to derive 6 dimensional Killing spinor equations from the 11 dimensional one.

Our convention is, in Minkowski spacetime,

Γa = σa ⊗ 1 ⊗ 1, a = 1, 2

Γα = σ3 ⊗ σα ⊗ γ7, α = 1, 2, 3

Γµ = σ3 ⊗ 1 ⊗ γµ, µ = 0, 1, . . . , 5. (2.8)

where σ are the Pauli matrices. For simplicity we will choose the basis where the 6 dimen-

sional gamma matrices γµ and γ7 are all antisymmetric.

We can decompose an 11 dimensional Killing spinor as an expansion over the Killing

spinors on S2, S3, i.e.

ǫ =
∑

i

(ζi ⊗ χi ⊗ ηi + c.c.) , (2.9)

where ζ(χ) is a 2(3) dimensional spinor, and η is the Killing spinor of the 6 dimensional

system we are interested in. On the spheres S2 and S3, the Killing spinor should be

conformally parallel, which means

∇aζ = ±
1

2
σaσ3ζ, (2.10)

∇αχ = ±
i

2
σαχ, (2.11)

where ∇ denotes the covariant derivative on the sphere with unit radius. For definiteness

let us choose the positive sign in the above relations for ζ, χ. One can then derive the

following 6 dimensional Killing spinor equations from δψM = 0:

[

/∂A −
i

6
e−2A /F + e−A

]

η = 0, (2.12)

[

/∂B +
i

12
e−2A /F + ie−Bγ7

]

η = 0, (2.13)

∇µη −
i

48
e−2Aγµ /Fη +

i

16
e−2A /Fγµη = 0. (2.14)

A comment is in order on different sign choices in (2.10) and (2.11) and the number

of supersymmetries of our ansatz. The Killing spinors on the sphere should come in some

irreducible representations of the isometry group. They make a doublet of SU(2) for S2,

and (2, 1)⊕ (1, 2) of SU(2)×SU(2) for S3. For each of them, we expect to have a nontrivial

solution to the 6 dimensional Killing spinor equation given above, so we should have 8

real solutions due to the Majorana condition in D = 11. Our ansatz thus should provide

1/4-BPS configurations in general.

2.2 Spinor bilinears and their properties

Let us now introduce the differential forms which are defined as spinor bilinears. We first

– 4 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
0

consider tensors whose components are given as η̄γµ1···µn
η. Our convention goes as follows:

C = iη̄η, (2.15)

D = η̄γ7η, (2.16)

Kµ = η̄γµη, (2.17)

Lµ = η̄γµγ7η, (2.18)

Yµν = η̄γµνη, (2.19)

Y ′
µν = iη̄γµνγ7η, (2.20)

Zµνλ = iη̄γµνλη, (2.21)

Wµνλρ = iη̄γµνλρη. (2.22)

Note that they are all real-valued. One can of course also define additional tensors such

as Z ′
µνλ = iη̄γµνλγ7η, but it is Poincare dual to Z. We will see shortly that the D = 11

solution is built upon a D = 4 Kahler space, so it is essentially the lower-rank tensors up

to 2-forms which are needed to specify the local geometry of supersymmetric solutions.

Due to antisymmetry of γµ, tensors such as ηT γ7η, ηT γµη, ηT γµγ7η, ηT γµνη vanish

identically. We can easily see ηT η = 0 for nontrivial solutions from (2.12) or (2.13). We

are thus left with the following tensors,

ωµν = ηT γµνγ7η, (2.23)

φµνλ = ηT γµνλη, (2.24)

ψµνλρ = ηT γµνλρη, (2.25)

which are in general complex-valued.

Now we are ready to study the geometry of supersymmetric backgrounds using the

existence of Killing spinors. We exploit the differential and algebraic constraints from

the Killing equations and Fierz identities to identify the local form of the supersymmetric

solutions.

Let us start with the scalars C,D. If we multiply η̄ to (2.12) and (2.13),

e−AC = 2e−BD = −
1

6
e−2Aη̄ /Fη. (2.26)

Furthermore, when we take the derivative of C, we get

∂µC =
1

12
e−2Aη̄[ /F, γµ]η (2.27)

= ∂µAC. (2.28)

So, we fix the normalization of η and set

C = eA, D = eB/2. (2.29)

From now on we will make use of these relations whenever we come across C,D.
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Now let us turn to the vectors. From the Fierz identity one can prove that

K · L = 0, (2.30)

K2 + L2 = 0. (2.31)

and K is time-like, whereas L is space-like. One can also prove that in general

|ηT η|2 =
1

2
(L2 − K2) − (C2 + D2). (2.32)

But since ηT η = 0, we have

L2 = −K2 = e2A +
e2B

4
. (2.33)

Readers are referred to appendix for details on Fierz rearrangement identities in 6 dimen-

sions.

From the Killing spinor equations, it is straightforward to verify that

∇(µKν) = 0, (2.34)

which implies K defines a Killing vector. And we can also see from the Killing spinor

equation that the isometry of the metric associated with K is actually a symmetry of the

whole solution. The Lie derivatives of scalar fields A,B and gauge field F all vanish. As a

one-form, its exterior derivative is given as

d(eAK) = F + Y. (2.35)

For the other vector field L, from the algebraic relations we can derive

Lµ ≡ η̄γµγ7η

=
1

2
e−B∂µ(eA+2B), (2.36)

and from the differential Killing spinor equation (2.13),

∇µLν = −
i

48
e−2Aη̄( /Fγµγν + γνγµ /F )γ7η +

i

16
e−2Aη̄(γµ /Fγν + γν /Fγµ)γ7η, (2.37)

leading to a significant requirement:

∇ · L = 0, (2.38)

while the exterior derivative satisfies d(e−A/2L) = 0, which is consistent with (2.36).

Now let us try to specify the 6 dimensional metric using the information we have

collected so far. From the time-like Killing vector K, we introduce a time-like coordinate

t and set K = ∂t. With L we define a space-like coordinate as y = eA/2+B and set

L = eA/2dy. It will be convenient to define a scalar ζ as

sinh ζ =
1

2
ye−3A/2, (2.39)
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to simplify the following discussions. In this coordinate system, we may write down the 6

dimensional metric as

ds2
6 = −e2A cosh2 ζ

(

dt +

4
∑

i=1

Vidxi

)2

+
e−A

cosh2 ζ
dy2 + e−A

4
∑

i,j=1

hijdxidxj . (2.40)

Note that we have introduced a warp factor e−A for the 4 dimensional space M4 with

metric hij for later convenience.

The problem is now effectively reduced to 4 dimensions. When we introduce the gauge

potential as F = dB, and expand

B = Btdt + Bidxi + Bydy, (2.41)

we have the following unknown functions in 4 dimensions.

1. metric hij

2. scalars A,Bt, By

3. vectors Vi, Bi

and they all depend on the 5 dimensional spatial coordinates y, xi in general.

Equipped with the local form of the metric, we are now in a position to choose an

orthonormal frame. We set

e0 = eA cosh ζ(dt + V ), (2.42)

e5 = e−A/2sech ζdy, (2.43)

ei = e−A/2êi, i = 1, 2, 3, 4. (2.44)

where êi is an orthonormal frame of the 4 dimensional metric hij .

Our system in general preserves 1/4 supersymmetry of the 11 dimensional supergravity,

and the relevant projection rules can be best expressed using the orthonormal frame given

above. From the algebraic Killing spinor equations we can eliminate the term with /F to

obtain
(

γ5̂ cosh ζ + sinh ζ + iγ7̂

)

η = 0, (2.45)

where the gamma matrices with hatted indices are defined in the tangent space. We can

simplify (2.45) in terms of η̃ = eζ/2γ
5̂η and obtain

(1 + iγ5̂γ7̂)η̃ = 0. (2.46)

Considering L = eA cosh ζe5, one can find the other projection condition

(1 − iγ0̂)η̃ = 0, (2.47)

and the normalization of η̃,

η̃†η̃ = eA. (2.48)
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The projection rules imply that η̃ is a chiral spinor in M4. As it is well known, an invariant

Weyl spinor in 2n-dimensional space defines an SU(n)-structure, and the intrinsic torsion

can be inferred from the derivatives of the invariant tensors which are constructed as spinor

bilinears [17, 18].

The 4 dimensional SU(2)-invariant tensors are included in the 6 dimensional spinor

bilinears we have constructed, and we only need to see how the 6 dimensional tensors are

decomposed into 4 dimensions. One can either directly evaluate each component of the

tensors using (2.46), (2.47) and (2.48), or make use of the appropriate Fierz identities.

Recall first it is our convention that

K = −e2A cosh2 ζ (dt + V ), (2.49)

L = eA/2dy. (2.50)

From (B.11) and (B.12),

Y =
1

2
(dt + V ) ∧ y dy + J, (2.51)

where J = 1
2Jijdxi∧dxj is a 2-form in 4 dimensions which may have a nontrivial dependence

on y. The higher-rank tensors turn out to be products of one- and two-forms given above.

One can also easily see that the 3-form Z can be written as

Z = −e−AK ∧ Y (2.52)

= eA cosh2 ζ (dt + V ) ∧ J. (2.53)

and the 4-form W is

W = −
1

2
e−AY ∧ Y (2.54)

= −
1

2
e−AJ ∧ J − (dt + V ) ∧ y dy ∧ J. (2.55)

One can also consider the complex-valued 2-form ω and find it is a 2-form purely in M4

as one can readily see from (B.16) and (B.17). In addition to that, we have

φ = −e−A/2

(

y

2
(dt + V ) + i

dy

cosh2 ζ

)

∧ ω, (2.56)

ψ = eA/2(dt + V ) ∧ dy ∧ ω. (2.57)

From the direct evaluation or the normalization properties such as (B.9) and (B.10),

we see that J can be used to define an almost complex structure with metric hij , and

Ω = (sech ζ) · ω provides the properly normalized (2, 0)-form, satisfying

Ω ∧ J = 0, Vol(M4) =
1

4
Ω ∧ Ω =

1

2
J ∧ J. (2.58)

The 6 dimensional derivatives can be decomposed with respect to our coordinate choice,

so we can write

d = d4 + dy ∧ ∂y + dt ∧ ∂t. (2.59)

– 8 –
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We now resume the computation of exterior derivatives for our spinor bilinears. Again

employing the algebraic and differential Killing spinor equation, one easily obtains

dY = 0. (2.60)

When rephrased in 4 dimensional language, it implies

d4J = 0, (2.61)

∂yJ = −
y

2
d4V, (2.62)

∂tJ = 0. (2.63)

One can also see that

dω = 0, (2.64)

which implies

d4(cosh ζ · Ω) = 0, (2.65)

∂y(cosh ζ · Ω) = 0, (2.66)

∂t(cosh ζ · Ω) = 0. (2.67)

The 4 dimensional derivatives of the SU(2) tensors (2.61) and (2.65) determine the SU(2)

structure and the intrinsic torsion of M4. From the fact that the (1, 1) form J is d4-closed,

and their exists a (2, 0) form cosh ζ Ω which is also closed, we conclude that M4 is almost

Calabi-Yau [19]. One notes that (2.65) can be expressed as

d4Ω = iP ∧ Ω, (2.68)

with

P =
3

2
tanh2 ζ(J · dA). (2.69)

As it is well-known, P is the Ricci potential whose exterior derivative gives the Ricci form

ℜ = dP .

For higher-rank tensors, after similar manipulations we obtain

d(e2AZ) = 2eAW − F ∧ Y, (2.70)

d(eAW ) = 0, (2.71)

d(eA/2φ) =
1

2
e−A/2ψ. (2.72)

We can check that these equations automatically hold once we demand the supersymmetry

conditions given in previous paragraphs. It is basically because these higher-rank tensors

are expressed as exterior products of 1 and 2-forms, as given in (2.52), (2.54), (2.56),

and (2.57), and do not pose genuinely new invariant tensors.

The gauge field F can be determined by (2.35) once the geometric data and scalar field

A are given. When decomposed into 4 dimensions we have

F = −d(e3A) ∧ (dt + V ) + e3A cosh2 ζ∂yV ∧ dy + F̂ , (2.73)

– 9 –
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where F̂ represents the 4 dimensional part of F and is given as

F̂ = −J − e3A cosh2 ζd4V. (2.74)

At this stage, we can make use of the algebraic Killing equation (2.13) to derive various

constraints on F . In particular, we consider (A.2), (A.5) and find the following relations,

(d4V )+ =
2

y
∂y(ln cosh ζ)J, (2.75)

∂yV = −
6 sinh2 ζ

y cosh4 ζ
J · dA. (2.76)

We now see that the Ricci potential P can be written more succinctly as

P = −
y

4
cosh2 ζ∂yV, (2.77)

and when we take d4,

y∂y

(

1

y
∂yJ

)

= d4

(

J · d sech2 ζ
)

. (2.78)

This equation can be considered as a higher dimensional analogue of the Toda equation for

the 1/2-BPS fluctuations considered in [2]. 1/4-BPS bubbles of IIB supergravity satisfies

a very similar differential equation, see (58) of [3].

We are now in a position to check whether our supersymmetric configurations de-

scribed so far automatically satisfy the classical field equations. As well-established by

now, supersymmetry requirements combined with the Bianchi identity and the form-field

equations imply that the Einstein equation is satisfied, unless the Killing spinor is null [20].

For the solutions of our interest in this paper, K2 = −L2 < 0 so the Killing spinor is not

null. From the equations (2.35) and (2.51) it follows that

dF = 0. (2.79)

Now let us check the field equation (2.7). Among the various supersymmetry requirement

conditions, we use (2.35), (A.7), (2.52) and (2.54) to obtain an expression for ∗F in terms

of the geometric data including A.

∗F = e−BY ∧ Y + 2e3A−Bd(e−2AK ∧ Y ). (2.80)

Now we can check (2.7) using the 4 dimensional decompositions of K,Y given

in (2.49), (2.60). It is straightforward to see that it vanishes provided ∂y(cosh
2 ζJ ∧J) = 0.

But this is a consequence of (2.38), or equivalently (2.65). So we have now eastablished

that the equations of motion are satisfied for our supersymmetric configurations.

2.3 Summary of the result

Let us give a summary of our results in this short subsection for easier reference. One can

rephrase our results in a more concise way as follows. The 1/4-BPS solutions of M-theory

– 10 –
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with S2 × S3 can be always written, up to a coordinate transformation, as follows.

ds2
11 =

(

y

2 sinh ζ

)4/3
[

ds2
S2 + 4 sinh2 ζ ds2

S3

+
4 sinh2 ζ

y2

(

−
y2

4 tanh2 ζ
(dt + V )2 +

dy2

cosh2 ζ
+ hijdxidxj

)]

, (2.81)

G = VolS2 ∧
(y

2
dy ∧ (dt + V ) −

1

4
d
[

y2 coth2 ζ(dt + V )
]

− J
)

. (2.82)

The 4-dimensional base space with metric hij is almost Calabi-Yau, i.e. its SU(2) structure

is dictated as

d4J = d4(cosh ζΩ) = 0, (2.83)

which implies that the Ricci potential is given as

P = −J · d4 ln cosh ζ. (2.84)

The y-dependence of the 4-dimensional space is described as

∂yJ = −
y

2
d4V, ∂y(cosh ζΩ) = 0. (2.85)

It turns out that the supersymmetry also requires that the Ricci potential has an alternative

expression

P = −
y

4
cosh2 ζ∂yV, (2.86)

and the integrability condition for V then leads to the following equation.

y∂y

(

1

y
∂yJ

)

= d4

(

J · d sech2 ζ
)

. (2.87)

3. Analytic continuation to AdS2 × S3 and AdS3 × S2

We have so far considered a specific class of supersymmetric solutions in D=11 supergrav-

ity: configurations with an S2 × S3 factor. If one is interested in similar problems, for

instance M-theory solutions with AdS2 × S3, obviously the same technique can be used

to first derive the 6 dimensional Killing spinor equations and then study the local form

of the metric and form-fields constrained by unbroken supersymmetries. But since we are

interested in solutions containing a product of maximally symmetric spaces with the same

dimensionalities, we can simply take multiple analytic continuations to transform our re-

sults on S2 × S3 to AdS2 × S3 or AdS3 × S2. Actually, such new solutions might have

even more significance in general. AdS2×S3 is the near-horizon geometry of 5 dimensional

black holes, so the general form of the metric can be very useful in the systematic study

of 5 dimensional supersymmetric black holes embedded in 11 dimensional supergravity.

AdS3 × S2 solutions are potentially dual to 2 dimensional supersymmetric conformal field

theory whose R-symmetry has an SU(2) factor.

Alternatively, one can also interpret the AdS solutions as a near-horizon limit of M2

or M5-branes. If one recalls that in our ansatz we have dimensionally reduced the 4-

form field of the 11 dimensional supergravity on S2, one can easily conclude that the
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AdS2 × S3 solutions are purely M2-brane configurations while the AdS3 × S2 solutions

are composed purely of M5-branes. Since we have 1/4-BPS solutions, we can consider

either intersection of two M-branes, or M-branes wrapped on supersymmetric cycles of

Calabi-Yau 3 manifolds, to obtain the desired solutions.

In fact, AdS solutions as near-horizon limits of wrapped M-branes have been system-

atically studied recently, first for M5-branes in [15] and also for M2-branes in [16]. The

authors used the fact that the Killing spinors of the supergravity configurations should

obey the same projection rule required for the probe brane action, and found the local

form of the solutions in an efficient way using the calibration conditions. AdS3 × S2 solu-

tions are given in (6.8-6.15) of [15], and AdS2 × S3 solutions given in (4.12-4.19) of [16].

One can check that these AdS solutions are exactly the same as our solution, albeit writ-

ten in different variables. Here we briefly sketch how to establish the equivalence of [15]

and our results. A similar relation can be also easily found with AdS2 × S3 solutions

of [16]. It is useful first to note that the triplet of almost complex structures J1, J2, J3

which describe the 4-dimensional base space in [15] are translated in our convention as

J1 → e−AJ, J2 + iJ3 → e−AΩ. Now it is straightforward to check that (6.10) and (6.11)

in [15] correspond to (2.64). Similarly, (6.12) of [15] is equivalent to (2.60). In particular,

when we complexify (6.13) and (6.14), the resulting equation is equivalent to (2.72).

In the rest of this subsection we illustrate how one can analytically continue S2 × S3

solutions to obtain AdS solutions, and write the form of the metric for easier reference.

By analytic continuation we mean we set all the coordinates of the round sphere to pure

imaginary. For instance, start with the 2-sphere with metric

ds2(S2) = dθ2 + sin2 θdφ2, (3.1)

and through the reparametrization θ = iρ, φ = iτ , the metric becomes

ds2 = −dρ2 + sinh2 ρ dτ2 (3.2)

= −ds2(AdS2). (3.3)

To fix the overall sign of the metric, we further take the re-definition e2A → −e2A but leave

e2B invariant, or y2 → iy2. In particular, now the metric can be written as

ds2 = e2Ads2
AdS2

+ y2e−Ads2
S3 + e2A cos2 ζ(dψ + V )2 +

e−A

cos2 ζ
dy2 + e−Ahijdxidxj , (3.4)

where we introduced a space-like coordinate ψ by setting t → ψ. ζ is defined as

sin ζ =
1

2
ye−3A/2, (3.5)

so for consistency the range of y is restricted to satisfy sin2 ζ ≤ 1, unlike the S2 × S3

solutions.

It is also straightforward to consider AdS3 × S2. The metric can be written as

ds2 = e2Ads2
S2 +y2e−Ads2

AdS3
+

y2e−A

4
cos2 ξ(dψ+V )2+

4e2A

y2 cos2 ξ
dy2+e−Ahijdxidxj , (3.6)

with

sin ξ =
2

y
e3A/2. (3.7)

– 12 –
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4. Examples and the identification of Kähler spaces

The most prominent examples of M-theory solution with S2 × S3 are certainly the maxi-

mally supersymmetric configurations AdS4 × S7 and AdS7 × S4. For definiteness here we

consider AdS4 × S7 and re-write the metric in a way compatible with our results in this

paper. The other case of AdS7 × S4 can be treated in a similar way.

Let us first start with the 11 dimensional metric, which can be written as follows to

make SO(3) × SO(4) isometry manifest.

ds2
11 = R2

[

dρ2 − cosh2 ρ dt2 + sinh2 ρ ds2
2 + 4(dθ2 + sin2 θds2

3 + cos2 θds̃2
3)

]

. (4.1)

Let us choose ds2
2 and ds2

3 as the part corresponding to our S2 and S3. Obviously, we can

identify as

e2A = sinh2 ρ, (4.2)

e2B = 4 sin2 θ, (4.3)

so

sinh ζ =
sin θ

sinh ρ
. (4.4)

In order to identify the 4 dimensional locally Kähler space, we split the metric of S3 using

the left-invariant forms of SU(2).

ds̃2
3 =

1

4

(

σ2
1 + σ2

2 + σ2
3

)

(4.5)

=
1

4

[

(dψ + α)2 + σ2
1 + σ2

2

]

, (4.6)

where dα = σ1 ∧ σ2. Now if we take the re-parametrization ψ → ψ + t the 6 dimensional

part of the metric becomes

ds2
6 = −(sinh2 ρ + sin2 θ)

[

dt −
cos2 θ

sinh2 ρ + sin2 θ
σ3

]2

+
cosh2 ρ cos2 θ

sinh2 ρ + sin2 θ
σ2

3 + dρ2 + 4dθ2 + cos2 θ(σ2
1 + σ2

2). (4.7)

First of all we can now see the identification

V = −
cos2 θ

sinh2 ρ + sin2 θ
σ3. (4.8)

In order to identify the 4 dimensional Kähler part which is transverse to K,L vectors, it is

required to compute e−A

cosh2 ζ
dy2 part of (2.40) and subtract it from (4.7). Upon the change

of coordinates

y = 2
√

sinh ρ sin θ, (4.9)

v = 2
√

cosh ρ cos θ, (4.10)
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it is straightforward to check

dρ2 + 4dθ2 =
sinh ρ

sinh2 ρ + sin2 θ
dy2 +

cosh ρ

sinh2 ρ + sin2 θ
dv2, (4.11)

where ρ, θ are now treated as functions of y, v implicitly through the inversion

of (4.9), (4.10). Now we can write down the metric of M4 which is expected to have

a locally Kähler structure.

ds2
M4

= sinh ρ

[

cosh ρ

sinh2 ρ + sin2 θ
dv2 +

cosh2 ρ cos2 θ

sinh2 ρ + sin2 θ
σ2

3 + cos2 θ(σ2
1 + σ2

2)

]

. (4.12)

The conditions on the SU(2)-structure of M4, such as the equations which are derived

from dY = dω = 0, can be verified once we fix the complex structure, or the Kähler form

of M4. It turns out that we need to choose

J =
sinh ρ cosh3/2 ρ cos θ

sinh2 ρ + sin2 θ
dv ∧ σ3 + sinh ρ cos2 θ σ1 ∧ σ2, (4.13)

then it is straightforward to check that

d4J = 0, (4.14)

∂yJ = −
y

2
d4V, (4.15)

indeed hold. The rest of the constraints can be also shown to be satisfied.

We next consider the 1/2-BPS bubble solutions of M-theory obtained in [2]. The

relevant little group of the supersymmetric states is SO(3) × SO(6), which should appear

as S2×S5 within the dual geometry. The Killing spinor analysis has been performed in [2]

and we quote the result here,

ds2 = −4e2λ(1 + ỹ2e−6λ)(dt + Ṽidxi)2 +
e−4λ

1 + ỹ2e−6λ
[dỹ2 + eD(dx2

1 + dx2
2)]

+4e2λds2(S5) + ỹ2e−4λds2(S2), (4.16)

G = Vol(S2) ∧ F, (4.17)

e−6λ =
∂yD

y(1 − y∂yD)
, (4.18)

Ṽi =
1

2
ǫij∂jD, (4.19)

F = dBt ∧ (dt + Ṽ ) + BtdṼ + dB̂, (4.20)

Bt = −4ỹ3e−6λ, (4.21)

dB̂ = 2 ∗3

[

(y∂2
yD + y(∂yD)2 − ∂yD)dy + y∂i∂yDdxi

]

. (4.22)

The scalar function D satisfies a 3 dimensional version of the Toda equation

(∂2
1 + ∂2

2)D + ∂2
yeD = 0. (4.23)

In order to identify the 4 dimensional almost Calabi-Yau space as a verification of our

result, we first write S5 as a fibration over S3,

dΩ2
5 = dα2 + cos2 αdψ2 + sin2 αds2(S3), (4.24)
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Obviously one can identify

e2A = ỹ2e−4λ, (4.25)

e2B = 4e2λ sin2 α. (4.26)

In order to identify the 4 dimensional Kähler base, we first shift ψ → ψ + t, and introduce

a new set of coordinates (y, v, z1, z2) from (ỹ, α, x1, x2) as follows

y = 2
√

ỹ sin α, (4.27)

u = eD/2 cos α, (4.28)

z1 = x1, (4.29)

z2 = x2. (4.30)

Then one can show that the metric tensor becomes

ds2
11 = ỹ2e−4λds2(S2) + 4e2λ sin2 α ds2(S3)

−4(e2λ sin2 α + ỹ2e−4λ)

[

dt +
(1 + ỹ2e−6λ)Ṽ − cos2 αdψ

sin2 α + ỹ2e−6λ

]2

+
ỹe−4λ

sin2 α + ỹ2e−6λ
dy2

+ỹ−1e2λ
{

4ỹ cos2 α
1 + ỹ2e−6λ

sin2 α + ỹ2e−6λ
(dψ − Ṽ )2 +

ỹe−6λ

1 + ỹ2e−6λ
eD(dz2

1 + dz2
2)

+4ỹe−D 1 + ỹ2e−6λ

sin2 α + ỹ2e−6λ

[

du + eD/2 cos α(Ṽ2dz1 − Ṽ1dz2)
]2 }

. (4.31)

We choose the Kähler form as

J = 4ỹ cos α e−D/2 1 + ỹ2e−6λ

sin2 α + ỹ2e−6λ

(

du + eD/2 cos α(Ṽ2dz1 − Ṽ1dz2)
)

∧ (dψ − Ṽ )

−
ỹe−6λ

1 + ỹ2e−6λ
eDdz1 ∧ dz2, (4.32)

and one can check that d4J = 0 and ∂yJ = −y
2d4V , using (4.23). The (2, 0)-form Ω is

taken as follows,

Ω = eiψ

(

4ỹ
ỹe−6λ

sin2 α + ỹ2e−6λ

)1/2

·

[

(du + eD/2 cos α(Ṽ2dz1 − Ṽ1dz2)) + i(dψ − Ṽ )
]

∧ (dz1 − idz2), (4.33)

which satisfies

d4(cosh ζΩ) = 0, ∂y(cosh ζΩ) = 0. (4.34)

5. The relation to 1/8-BPS AdS bubbles

Supersymmetric M2-brane configurations with an AdS2 factor in the metric has been stud-

ied in [10]. It turns out that the 9 dimensional internal space should take the form of a
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warped U(1)-fibration over an 8 dimensional Kähler space M8. One can also easily trans-

late the results into the case of solutions with an S2, instead of AdS2, through analytic

continuation. They would in general provide 1/8-BPS bubbles of M-theory. The specific

type of solutions with S2 ×S3 we have studied in this paper can be considered as a special

case of such 1/8-BPS solutions. In this section we show how the 1/4-BPS solutions studied

in this paper can be re-written in a way as presented in [10, 21].

Let us first briefly summarize the result of [10]. One starts with the following ansatz:

ds2 = e2Ā
[

ds2(S2) + ds2(Y9)
]

, (5.1)

G = Vol(S2) ∧ F. (5.2)

The existence of a nontrivial Killing spinor restricts the local form of the solution as follows,

ds2(Y9) = −(dt + P )2 + e−3Āds2(M8), (5.3)

F = J + d
[

e4Ā(dt + P )
]

. (5.4)

M8 is required to be Kähler with Kähler form J , and Ricci potential P . The warp factor

is also determined purely by the geometric data of M8,

e−3Ā = −
1

2
R. (5.5)

The Einstein equation combined with the supersymmetry requirement demands that the

Ricci tensor of M8 should satisfy the following equation.

¤R −
1

2
R2 + RmnRmn = 0. (5.6)

One can construct new AdS2 (or S2) solutions in 11 dimensional supergravity based on a

solution of (5.6). Indeed, a countably infinite number of new AdS2 solutions in M-theory

have been obtained in [21] using a co-homogeneity 1 solution of (5.6).

Let us now try to identify the 8 dimensional space from the result we obtained in this

paper. Obviously we first identify the two S2’s in (2.40) and (5.1) and set Ā = A. We then

write the metric of S3 explicitly using the left-invariant forms of SU(2)

ds2(S3) =
1

4

(

σ2
1 + σ2

2 + σ2
3

)

. (5.7)

Now upon a coordinate shift σ3 → σ3 + dt, we can re-arrange the metric (2.40) into a form

found in (5.1) and (5.3), and identify the metric of 8 dimensional Kähler base as

ds2(M8) = sech2 ζ dy2 +
y2

4
cosh2 ζ (σ3 − V )2 +

y2

4
(σ2

1 + σ2
2) +

4
∑

i,j=1

hijdxidxj . (5.8)

And the Ricci potential is given as

P = V cosh2 ζ − sinh2 ζ σ3. (5.9)
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In order to check the consistency conditions we introduce the Kähler form of M8 as

J8 =
y

2
dy ∧ (σ3 − V ) +

y2

4
σ1 ∧ σ2 + J4, (5.10)

where J4 denotes the Kähler form of M4. One can easily check dJ8 = 0 using ∂yJ4+
y
2d4V =

0. The associated (4, 0)-form is given as

Ω8 =

(

y

2
sechζdy + i

y2

4
cosh ζ(σ3 − V )

)

∧ (σ1 + iσ2) ∧ Ω4. (5.11)

It is also straightforward to check dΩ8 = iP ∧Ω8 with P given as (5.9), so dP indeed gives

the Ricci-form of M8.

6. Discussions

In this paper we have used the technique of Killing spinor analysis to determine the geomet-

ric constraints imposed by the requirement of supersymmetry and SO(3)×SO(4) isometry

in M-theory. The main motivation for this work has been to generalize the AdS bubble

solutions of [2] to 1/4-BPS solutions. Like other examples of supersymmetric AdS bubbles

reported earlier in [3 – 5, 10], it turns out that the 11 dimensional spacetime is based on a

Kähler subspace. It is natural to associate this symplectic structure with the phase space

of the gauge field dynamics for the BPS sector. We have derived a set of partial differen-

tial equations which determines the Kähler base space and eventually the 11 dimensional

metric and the gauge field. Technically the partial differential equations can be derived if

one first considers AdS2 ×S3 or AdS3 ×S2 and continue analytically to S2 ×S3 case. The

relevant AdS solutions have been already studied in [15] and [16]. We argued that all of

them essentially lead to the same equations, in section3.

Once we have reduced all the equations of motion in 11 dimensions down to 5 di-

mensions spanned by y, xi, the next step is to solve the equations like (2.78) and obtain

new solutions. We leave this task for future publications, and put more emphasis on the

hierarchy of Kähler spaces associated with different types of AdS bubbles. 1/2-BPS bub-

bles of [2], including the maximally supersymmetric solutions, provide nontrivial solutions

of (2.78). In turn, the solutions presented in this paper would automatically satisfy another

highly nontrivial equation (5.6) which describes the dynamics of 1/8-BPS bubbles.

It is also very important to find the connection of our results with the dual field

theory dynamics. For 1/2-BPS bubbles of IIB theory, where the field theory is amenable

to perturbative analysis since it is reduced to a hermitian matrix model, there has been

considerable progress in relating the Yang-Mills theory with the semiclassical treatment

of IIB supergravity theory [22 – 27]. See also [28] for analogous discussions on bubbles

of AdS3 × S3. Together with the insight one earns from the concrete computations on

both sides of the duality in the above works, we hope that our results on the geometry of

supergravity solutions play an important role in uncovering the microscopic building block

of the dual conformal field theory on M-branes.
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A. Algebraic relations between the spinor bilinears

A number of algebraic equations can be derived for the spinor bilinears from the algebraic

Killing equations (2.12) and (2.13). We first start with (2.12) and take contractions with

η̄ after multiplying different numbers of gamma matrices. If we multiply η̄ we have

Kµ∂µA = 0, (A.1)

FµνY µν + 6e2A = 0. (A.2)

And if we take contractions with η̄γµ to get one-form equations we obtain

∂µA +
1

3
e−2AFµνKν = 0, (A.3)

Kµ −
1

6
e−AZµνλF νλ + eAYµν∂

νA = 0. (A.4)

Similarly the two-form identities are

Fµν −
e−A

2
WµναβFαβ + 3Yµν + 3 (Kµ∂νA − Kν∂µA) = 0, (A.5)

Zµνα∂αA +
1

3
e−2A

(

YµαF α
ν − YναF α

µ

)

= 0. (A.6)

Let us present a 4-form equation also here which plays a crucial role when we check the

gauge field equation of motion. One multiplies η̄γµνλρ to (2.12) and find

W −
1

3
Y ∧ F +

1

6
e−A+B ∗ F + eAZ ∧ dA = 0. (A.7)

One can also first eliminate /F in the equation and construct various spinor bilinear,

i.e. start with
[

/∂(A + 2B) + e−A + 2ie−Bγ7

]

η = 0. (A.8)

If we multiply η̄ from left the real part gives

Kµ∂µ(A + 2B) = 0, (A.9)

and the imaginary part is

D = e−A+BC/2. (A.10)
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Below we list several of such algebraic relations.

Lµ∂µ(A + 2B) = 2e−BC + e−AD, (A.11)

L =
eB

2
Cd(A + 2B), (A.12)

Y ′ = −
1

2
e−A+BY − e−AK ∧ L, (A.13)

Z ′ = +eAd(A + 2B) ∧ Y ′, (A.14)

W = −eA−B ∗ Y + d(A + 2B) ∧ Z. (A.15)

B. Fierz identities

In this section we present a list of useful Fierz rearrangement identities for 6 dimensional

commuting spinors. Our Killing spinor system is very similar to the 1/4-BPS solutions

considered in [3], and we find the appendix very useful. Readers are referred to [3] for more

identities and detailed derivations. In this section we will repeat some of the derivations

in [3] and rephrase them in our convention for quick reference and self-sufficiency. We will

also consider identities involving ηT η. In particular it will be shown how to derive (2.33).

In our convention γµ are all antisymmetric and generate 6 dimensional Clifford algebra.

The chirality is defined in terms of

γ7 = γ0123456, (B.1)

and the positive(negative) chirality part of a spinor η is given as η± = 1
2(1 ± γ7)η.

The basic relation for Fierz rearrangement is (see (63) in [3])

η̄1η2η̄3η4 =
1

8
(η̄1η4η̄3η2 + η̄1γ7η4η̄3γ7η2)

−
1

16
(η̄1γµνη4η̄3γ

µνη2 + η̄1γµνγ7η4η̄3γ
µνγ7η2)

+
1

8
(η̄1γµη4η̄3γ

µη2 − η̄1γµγ7η4η̄3γ
µγ7η2)

−
1

96

(

η̄1γµνλη4η̄3γ
µνλη2 − η̄1γµνλγ7η4η̄3γ

µνλγ7η2

)

. (B.2)

If we choose η̄1 = η̄±γµ, η2 = η±, η̄3 = η̄± and η4 = γµη± one can derive

(K ± L)2 = 0, (B.3)

which in turn implies (2.30) and (2.31).

If one uses η̄1 = η̄+, η2 = η−, η̄3 = η̄− and η4 = η+ we get

C2 + D2 =
1

4
(L2 − K2) +

1

48
(Z2 − Z ′2). (B.4)

In order to prove (2.33), one chooses η̄1 = ηT
+, η2 = η−, η̄3 = η̄− and η4 = γ0η

∗
+, to find

|ηT η|2 =
1

4
(L2 − K2) −

1

48
(Z2 − Z ′2), (B.5)
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and as a result we can verify (2.33).

It is also desirable to compute the square of two-forms Y and ω. Choosing η̄1 =

η̄+, η2 = η−, η̄3 = η̄+ and η4 = η−, we get

C2 − D2 =
1

6
(Y 2 − Y ′2), (B.6)

CD =
1

6
Y · Y ′, (B.7)

and we also consider η̄1 = ηT
+, η2 = η−, η̄3 = η̄+ and η4 = γ0η

∗
− and find

|ηT η|2 = −
1

4
(C2 + D2) +

1

8
(Y 2 + Y ′2). (B.8)

We can thus conclude,

Y 2 = 4C2 − 2D2 + 4|ηT η|2, Y ′2 = −2C2 + 4D2 + 4|ηT η|2, (B.9)

We can also use η̄1 = ηT
+, η2 = γ0η

∗
−, η̄3 = η̄+ and η4 = η− to obtain

|ηT η|2 =
1

2
ω · ω∗ − 4(C2 + D2). (B.10)

In order to see the decomposition of 6 dimensional tensors in terms of 4 dimensional

ones, we need to compute their contractions with L and K. The results are given in (75),

(76), (77) and (78) of Donos. In our notation they become

iKY = DL, (B.11)

iLY = DK, (B.12)

iKY ′ = CL, (B.13)

iLY ′ = CK. (B.14)

To compute the contraction of ω with one-forms we consider η̄1 = η̄±γµ, η2 = η±, η̄3 = ηT
±

and η4 = γµγνη∓ and find

η̄γµ(1 ± γ7)η · ηT γµγν(1 ∓ γ7)η = 0, (B.15)

which leads to

iKω =
1

2
(ηT η)L, (B.16)

iLω =
1

2
(ηT η)K. (B.17)

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174].

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB,38,1113
http://arxiv.org/abs/hep-th/9711200
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://arxiv.org/abs/hep-th/0409174


J
H
E
P
0
8
(
2
0
0
7
)
0
5
0

[3] A. Donos, A description of 1/4 BPS configurations in minimal type IIB SUGRA, Phys. Rev.

D 75 (2007) 025010 [hep-th/0606199].

[4] A. Donos, BPS states in type IIB sugra with SO(4) × SO(2)(gauged) symmetry, JHEP 05

(2007) 072 [hep-th/0610259].

[5] N. Kim, AdS3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094

[hep-th/0511029].

[6] E. Gava, G. Milanesi, K.S. Narain and M. O’Loughlin, 1/8 BPS states in AdS/CFT, JHEP

05 (2007) 030 [hep-th/0611065].

[7] B. Chen et al., Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity,

arXiv:0704.2233.

[8] D. Bak, S. Siwach and H.-U. Yee, 1/2 BPS geometries of M2 giant gravitons, Phys. Rev. D

72 (2005) 086010 [hep-th/0504098].

[9] M.A. Ganjali, On toda equation and half BPS supergravity solution in M-theory, JHEP 01

(2006) 026 [hep-th/0511145].

[10] N. Kim and J.-D. Park, Comments on AdS2 solutions of D = 11 supergravity, JHEP 09

(2006) 041 [hep-th/0607093].

[11] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of

M-theory, Class. and Quant. Grav. 21 (2004) 4335 [hep-th/0402153].

[12] H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014

[hep-th/0509235].

[13] O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026

[hep-th/0604133].

[14] O. Lunin, 1/2-BPS states in M-theory and defects in the dual CFTs, arXiv:0704.3442.

[15] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from

wrapped M5 branes, JHEP 11 (2006) 053 [hep-th/0605146].

[16] O.A.P. Mac Conamhna and E. O Colgain, Supersymmetric wrapped membranes, AdS2 spaces

and bubbling geometries, JHEP 03 (2007) 115 [hep-th/0612196].

[17] S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau

compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102].

[18] G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl.

Phys. B 652 (2003) 5 [hep-th/0211118].

[19] D. Joyce, Lectures on Calabi-Yau and special Lagrangian geometry, math.DG/0108088.

[20] J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP 04 (2003) 039

[hep-th/0212008].

[21] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2 and bubble solutions,

JHEP 04 (2007) 005 [hep-th/0612253].

[22] L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace

quantization of ’bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025

[hep-th/0505079].

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C025010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C025010
http://arxiv.org/abs/hep-th/0606199
http://jhep.sissa.it/stdsearch?paper=05%282007%29072
http://jhep.sissa.it/stdsearch?paper=05%282007%29072
http://arxiv.org/abs/hep-th/0610259
http://jhep.sissa.it/stdsearch?paper=01%282006%29094
http://arxiv.org/abs/hep-th/0511029
http://jhep.sissa.it/stdsearch?paper=05%282007%29030
http://jhep.sissa.it/stdsearch?paper=05%282007%29030
http://arxiv.org/abs/hep-th/0611065
http://arxiv.org/abs/0704.2233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C086010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C086010
http://arxiv.org/abs/hep-th/0504098
http://jhep.sissa.it/stdsearch?paper=01%282006%29026
http://jhep.sissa.it/stdsearch?paper=01%282006%29026
http://arxiv.org/abs/hep-th/0511145
http://jhep.sissa.it/stdsearch?paper=09%282006%29041
http://jhep.sissa.it/stdsearch?paper=09%282006%29041
http://arxiv.org/abs/hep-th/0607093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C4335
http://arxiv.org/abs/hep-th/0402153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C084014
http://arxiv.org/abs/hep-th/0509235
http://jhep.sissa.it/stdsearch?paper=06%282006%29026
http://arxiv.org/abs/hep-th/0604133
http://arxiv.org/abs/0704.3442
http://jhep.sissa.it/stdsearch?paper=11%282006%29053
http://arxiv.org/abs/hep-th/0605146
http://jhep.sissa.it/stdsearch?paper=03%282007%29115
http://arxiv.org/abs/hep-th/0612196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB654%2C61
http://arxiv.org/abs/hep-th/0211102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB652%2C5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB652%2C5
http://arxiv.org/abs/hep-th/0211118
http://arxiv.org/abs/math.DG/0108088
http://jhep.sissa.it/stdsearch?paper=04%282003%29039
http://arxiv.org/abs/hep-th/0212008
http://jhep.sissa.it/stdsearch?paper=04%282007%29005
http://arxiv.org/abs/hep-th/0612253
http://jhep.sissa.it/stdsearch?paper=08%282005%29025
http://arxiv.org/abs/hep-th/0505079


J
H
E
P
0
8
(
2
0
0
7
)
0
5
0

[23] J. Dai, X.-J. Wang and Y.-S. Wu, Dynamics of giant-gravitons in the LLM geometry and the

fractional quantum Hall effect, Nucl. Phys. B 731 (2005) 285 [hep-th/0508177].

[24] T. Yoneya, Extended fermion representation of multi-charge 1/2-BPS operators in AdS/CFT:

towards field theory of D-branes, JHEP 12 (2005) 028 [hep-th/0510114].

[25] A. Dhar, G. Mandal and M. Smedback, From gravitons to giants, JHEP 03 (2006) 031

[hep-th/0512312].

[26] D. Berenstein and R. Cotta, A Monte-Carlo study of the AdS/CFT correspondence: an

exploration of quantum gravity effects, JHEP 04 (2007) 071 [hep-th/0702090].

[27] K. Skenderis and M. Taylor, Anatomy of bubbling solutions, arXiv:0706.0216.

[28] K. Larjo, On the existence of supergravity duals to D1-D5 CFT states, JHEP 07 (2007) 041

[arXiv:0705.4433].

– 22 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB731%2C285
http://arxiv.org/abs/hep-th/0508177
http://jhep.sissa.it/stdsearch?paper=12%282005%29028
http://arxiv.org/abs/hep-th/0510114
http://jhep.sissa.it/stdsearch?paper=03%282006%29031
http://arxiv.org/abs/hep-th/0512312
http://jhep.sissa.it/stdsearch?paper=04%282007%29071
http://arxiv.org/abs/hep-th/0702090
http://arxiv.org/abs/0706.0216
http://jhep.sissa.it/stdsearch?paper=07%282007%29041
http://arxiv.org/abs/0705.4433

